
A Maxima tutorial

Jaime E. Villate
University of Porto, Portugal

December 11, 2023

1 Introduction

Maxima is a Free Software package for the manipulation of symbolic
and numerical expressions, including differentiation, integration, Taylor
series, Laplace transforms, ordinary differential equations, systems of
linear equations, polynomials, sets, lists, vectors, matrices and tensors
and more. It can be freely downloaded from its Website (https://maxima.
sourceforge.net) which also includes reference manuals and tutorials in
several languages. There is an active community of developers and users;
questions about Maxima can be sent to its main mailing-list address at
maxima-discuss@lists.sourceforge.net.
Maxima is one of the oldest Computer Algebra Systems (CAS). It was
created by MIT’s MAC group in the 1960s and it was initially called
Macsyma (project MAC’s SYmbolic MAnipulator). Macsyma was originally
developed for the DEC-PDP-10 large-scale computers that were used in
various academic institutions at that time.
In the 1980s, its code was ported to several new platforms and one of
those derived versions was called Maxima. In 1982 the MIT decided
to sell Macsyma as proprietary software and simultaneously Professor
William Schelter of the University of Texas continued to develop the
Maxima version. In the late 1980s other proprietary CAS systems similar
to Macsyma appeared, such as Maple and Mathematica. In 1998, Professor
Schelter obtained authorization from the DOE (Department of Energy),
which held the copyright for the original version of Macsyma, to distribute
the source code of Maxima as free software. When Professor Schelter
passed away in 2001, a group of volunteers was formed to continue to
develop and distribute Maxima as free software.
In the case of CAS software, the advantages of free software are very
important. When a method fails or gives very complicated answers it is
quite useful to have access to the details of the underlying implementation
of the methods used. On the other hand, as one’s research and teaching
becomes dependent on the results of a CAS, it is desirable to have good
documentation of the methods involved and its implementation and to be
assured that there are no legal barriers forbidding the examination and
modification of that code.

2 Graphical interfaces for maxima

Maxima is a program that uses a command shell (or a console or text
terminal) to interact with the user. There are also several graphical
interfaces to work with Maxima, such as wxMaxima, which is a software

1

https://maxima.sourceforge.net
https://maxima.sourceforge.net

Figure 1: Xmaxima’s graphical interface.

package separate from Maxima; you might have to install that package
separately, if it’s not bundled to the package you download to install
Maxima. Two other graphical interfaces, imaxima and Xmaxima, are
being developed and distributed together with Maxima. The left-hand side
of Figure 1 shows some commands being run in Xmaxima, and the right-
hand side shows the same commands as being run in imaxima, which
runs from within the Emacs text editor
The graphical interfaces connect to the Maxima program, send the com-
mands that the user types to Maxima, and show the result it returns.
Some interfaces, such as wxMaxima and imaxima, convert those results
to a graphic that resembles closer what the user would find in a textbook,
while Xmaxima leaves the result as given by Maxima, namely simple text
that can take several lines in the case of fractions, powers or long output.
Xmaxima usually opens two windows (Figure 1). One of them, called the
browser, shows a tutorial and allows the user to read the manual or other
Web pages. The second window is the console, where Maxima commands
should be written and their output will appear.
In the “Edit” menu there are options to navigate the list of previous
commands (“previous input”) or to copy and paste text; some options in the
menus can also be accessed with the shortcut keys shown next to them.
Different colors are used to distinguish commands that have already been
processed (in blue) from the command that is being written and has not
yet been sent to Maxima (in green); the results are shown in black (see
Figure 1).

2

When changing a command already executed or when starting a new
command, care must be taken that what is being written appears in green
or blue, to ensure that it will be sent to Maxima. Sometimes it may be
necessary to use the options “Interrupt” or “Input prompt”, in the “File”
menu to recover the state in which Xmaxima is accepting commands.
It is also possible to move the prompt symbol to some older entry in the
screen (in blue), change it, and press enter to repeat the same command
with the modifications.

3 Data input and output

When a Maxima session starts, the tag (%i1) will appear, which refers to
input 1. A valid command should be written next to that tag, ended with
a semi-colon and when the enter key is pressed, that input will be parsed,
simplified, linked to an internal variable %i1 and its result will be shown
following a tag (%o1), referring to output 1. That result will also be linked
to an internal variable %o1. Another tag (%i2) will then appear, to mark
the place where a second command may be written and so on. The most
basic usage of Maxima is as a calculator, as in the following examples.

(%i1) 2.5*3.1;

(%o1) 7.75

(%i2) 5.2*log(2);

(%o2) 5.2 log 2

The result (%o2) shows two important aspects of Maxima. First, the natu-
ral logarithm of 2 was not computed, because its result is an irrational
number which cannot be represented exactly with a finite number of nu-
merical digits. The second important aspect is that the symbol * which is
always required when a product is entered and the parenthesis, which
have to be used to specify the argument of a function, were not included
in the output. That happened because, by default, the output is shown in
a mode called display2d, in which the output tries to resemble the way
mathematical expressions are usually shown in books. The expression
“5.2 log 2” most probably will be interpreted correctly by a reader, as
the product of 5.2 times the logarithm of 2; however, if that same am-
biguous expression was given as input to Maxima it would trigger an
error, because Maxima syntax requires an operator between 5.2 and the
logarithm function, and the argument of the logarithm must be inside
parenthesis. In spite of the form of the output, variable %o2 has been
linked to an expression with correct syntax, so it can be reused in later

3

Maxima commands without syntax errors.
To look up the documentation of a function or special variable in the
manual, for instance the function log that was just used, the describe
function is used, which can be abbreviated with a question mark followed
by space and the name of the function:

(%i3) ? log

-- Function: log (<x>)

Represents the natural (base e) logarithm of <x>.

Maxima does not have a built-in function for the base 10 logarithm

or other bases. 'log10(x) := log(x) / log(10)' is a useful

definition.

...

4 Numbers

Maxima accepts real and complex numbers. Real numbers in Maxima can
be integers, rationals, such as 3/5, or floating-point numbers, for instance,
2.56 and 25.6e-1, which is a short notation for 25.6 × 10−1. Irrational
numbers, such as sqrt(2) or log(2) (natural logarithm of 2) are left in
that form, without being approximated by floating-point numbers, and
later calculations, such as sqrt(2)^2 or exp(log(2)) will lead to the exact
result 2.
Floating-point numbers are “contagious”; namely, the operations in which
they enter will be carried out in that format. For example, if instead of
writing log(2) we would write log(2.0), the logarithm would be computed
approximately in floating-point. Another way to force an expression to
be computed as a floating-point number consists on using the function
float. For instance, since the result (%o2) obtained above has been stored
in variable %o2, to get a floating-point approximation of that result we
would write:

(%i4) float (%o2);

(%o4) 3.604365338911716

The function float computed the product 5.2 log(2) approximately, using
16 significant digits in floating-point format. The floating-point format
used in Maxima stores each number in 64 binary bits, which leads to
between 15 and 17 significant digits when expressed in decimal base.

4

That format is known as double precision.
A frequent source of confusion arises from the fact that those numbers
are being represented internally in binary base and not in decimal base;
thus, certain numbers that can be represented in decimal base with a few
digits, for instance 0.1, would need an infinite number of binary digits to
be represented accurately in binary base. It is the situation as with the
fraction 1/3 in decimal base, which in floating-point form has an infinite
number of digits: 0.333. . . , while in base 3 that fraction would simply be
0.1.
The fractions that lead to an infinite number of digits are not the same in
the decimal and binary base. Consider the following results, which would
appear in any system that uses binary base and double-precision format
and which might puzzle somebody used to working with in decimal base:

(%i5) 2*0.1;

(%o5) 0.2

(%i6) 6*0.1;

(%o6) 0.6000000000000001

Some computing systems ignore the last digits in the results obtained from
double-precision calculations, showing the result as 0.6, but whenever
binary double-precision is used, the result of 6×0.1 will not be exactly 0.6.
The best approximation of 1/3 in decimal base, using only 3 significant
digits, is 333/103 = 0.333. In binary base, it is represented as 𝑛/2𝑚 (𝑛
and 𝑚 integers); with the 52 significant digits used in the double-precision
standard, 𝑛 has to be less than 252. Maxima’s function rationalize shows
the approximate representation being used for a number, in the form of a
fraction. For instance the approximation to 0.1 is

(%i7) rationalize (0.1);

(%o7)
3602879701896397
36028797018963968

where 3602879701896397 is less than 252 and bigger than 251, and the
denominator is a power of 2 (36028797018963968 = 255). That fraction is
not exactly equal to 0.1, but it is the best possible approximation using
double-precision.
There is a Maxima specific format which accepts bigger number of sig-
nificant digits to represent floating-point numbers, called bigfloat. To
use it, one should write “b”, instead of “e” for the exponents; for exam-
ple, 2.56 × 1020, written as 2.56e20 would be represented internally in
double-precision format, with 16 significant digits, and any calculations

5

made with it would result in other double-precision numbers. But if the
same number was written as 2.56b20, it would be stored in the bigfloat
format and any calculations involving it would produce other bogfloat
numbers. By default, bigfloat format uses the same 16 significant digits
as double-precision, but that can be changed by changing the value of the
system variable fpprec (floating-point precision).
Function bfloat converts a number into bigfloat. For example, to show
an approximation to result (%o2) with 60 significant digits, the following
commands can be used:

(%i8) fpprec: 60;

(%o8) 60

(%i9) bfloat (%o2);

(%o9) 3.60436533891171573209728052144843624984298344312084369367127b0

The letter b followed by zero at the end of (%o9) means that the number is
stored in bigfloat format and it should be multiplied by a factor of 100 = 1.
In the rest of this tutorial we will show all floating-point results with
only 4 significant digits. That is achieved by changing system variable
fpprintprec from its default value of 0 to 4:

(%i10) fpprintprec: 4;

(%o10) 4

Internally, all floating-point double-precision numbers will continue to
have 16 significant digits and bigfloat numbers will have the number of
significant digits set by fpprec, but whenever a number has to be printed
in the screen, it will be rounded to 4 significant digits. If we would like to
see all the significant digits stored internally, variable fpprintprec should
be set to its default value of 0.

5 Variables

To associate a value or other objects to a variable, use a colon “:” and not
the equal sign “=”, which is reserved to define mathematical equations.
The name of the variables can be any combination of letters, numbers
and the characters % and _, but the first character cannot be a number.
Maxima is case sensitive. Here are some examples:

(%i11) a: 2$

(%i12) [b, c]: [-2, -4];

6

(%o12) [−2, −4]

(%i13) c;

(%o13) −4

(%i14) Root1: (-b + sqrt(b^2 - 4*a*c))/(2*a);

(%o14) 2

(%i15) d: sqrt(z^2 + a*c);

(%o15)
√
𝑧2 − 8

variables a, b, c and Root1 were associated to the numerical values 2, −2,
−4 and 2, while variable d was associated to an expression.
Notice that input (%i11) was ended with a dollar sign $, rather than a
semi-colon. That will make the command to be executed without showing
its result on the screen. In spite of not being displayed on the screen, that
result has been associated to the symbol %o11 so it can be used later on.
Input (%i12) shows how to associate several variables to several values
with a single command. When the name of a variable is written, as in
input (%i13), the output will be the value associated to that variable or
the name of the variable itself if it has not been associated to any value.
In (%i14), the values associated to a, b and c were replaced and the result
was associated to variable Root1. If the values associated to a, b or c are
later changed, that will not affect the value already associated to Root1.
In (%i15) since z has not yet been associated to any value, it is just a
symbol and variable d is then associated to an expression that depends on
that symbol. Variables can be associated to numerical values, expressions
with abstract symbols, equations and several other objects that will be
described in the following sections. That means that when you add two
variables, you could be adding a mix of numbers, expressions, equations
and so on; the result could lead to some other valid object or to an error it
Maxima can not sum those objects.
To remove the value associated to a variable, the function remvalue can
be used; in the following example the value associated to a is removed and
an expression that depends on the symbol a is then associated to Root1:

(%i16) remvalue (a)$

(%i17) Root1: (-b + sqrt(b^2 - 4*a*c))/(2*a);

(%o17)

√
16 𝑎 + 4 + 2

2 𝑎

The command remvalue(all) removes all values associate variable in an
expression by a given value; for instance, the following 2 commands will

7

show the value of the expression associated to Root1 when a equals 1 and
then the floating-point approximation of that irrational number.

(%i18) subst (a=1, Root1);

(%o18)
2
√

5 + 2
2

(%i19) float(%o18);

(%o19) 3.236

The objects associated to a and Root1 are not modified after (%i18); a
continues to be an abstract symbol and Root1 is associated to an expression
that depends on the symbol a.
Maxima uses several system variables, whose names start by %. Some
examples are the variables %i2 and %o2, linked to an input command and
its result. The character % itself represents the last result obtained. For
instance, in (%i19) it would have been enough to write down % instead of
%o18. The two commands (%i18) and (%i19) could have been combined
into a single command float(subst (a=1,Root1)).
A variable can also be associated to an algebraic equation, as in the
following example

(%i20) second_law: F = m*a;

(%o20) 𝐹 = 𝑎𝑚

Maxima does some simplifications to the input commands before executing
them. In this last example, the result of that simplification was to change
the order of the product, to put the two symbols in alphabetical order. If
any of the 3 symbols F, m or a were associated to a value or other object,
that object would have been substituted by the simplifier. To prevent
the value of a variable to be replaced, its name can be preceded by an
apostrophe (’a refers to the symbol a and not to any object associated to
it).
The following example shows how the equation associated to second_law
does not change when one of the symbols in it s then associated to a value

(%i21) a: 3;

(%o21) 3

(%i22) second_law;

(%o22) 𝐹 = 𝑎𝑚

The function subst is used to substitute values of the symbols in sec-
ond_law. Several values can be replaced at once, as in the following

8

example

(%i23) subst([m=2,'a=5], second_law);

(%o23) 𝐹 = 10

The first argument in the subst command in (%i24) is a list, whose ele-
ments are separated by commas and within square brackets. The two
elements in that list are equations. The apostrophe pre-pended to the
symbol a prevents it to be replaced by its associated value. Without the
apostrophe, the subst command would have been simplified as

(%i24) subst([m=2, 3=5], second_law);

(%o24) 𝐹 = 2 𝑎

in which only m was replaced and the statement “3=5” was simply ignored.

6 Lists

As seen in the previous section, lists can be created using square brackets
and commas. The following example creates a list with the squares of the
first five natural numbers and associates it to the variable squares

(%i25) squares: [1, 4, 9, 16, 25]$

Many of the operations among numbers can also be done among lists. For
example, let us create another list in which each element is the square
root of the corresponding element of squares, multiplied by 3

(%i26) 3*sqrt(squares);

(%o26) [3, 6, 9, 12, 15]

The elements of a list are indexed by integers starting with 1. To refer to
an element in the list, the corresponding index is written within square
brackets; for instance the third element in the list squares is

(%i27) squares[3];

(%o27) 9

A very useful function to create lists is makelist. One way to use it is to
expand an expression depending on a dummy index, for several values of
that index. The first argument must be the expression to be expanded,
followed by the dummy index, the initial value for it, the upper bound

9

for the index values and the increments between successive values of the
index. If the increment is not given, its default value is 1. Here are two
examples:

(%i28) cubes1: makelist (i^3, i, 1, 5);

(%o28) [1, 8, 27, 64, 125]

(%i29) cubes2: makelist (i^3, i, 2, 6, 0.6);

(%o29) [8, 17.58, 32.77, 54.87, 85.18, 125.0, 175.6]

The first list has the cubes of 1, 2, 3, 4 and 5. The second one has the cubes
of 2, 2.6, 3.2, 3.8, 4.4, 5.0 and 5.6. Notice that the elements of cubes2 are
shown with only 4 significant digits, because in (%i10) we changed the
value of the system variable fpprintprec. In a fresh Maxima session they
would be shown with 16 significant digits.
Instead of giving an initial value and an upper bound for the dummy index,
we can give a list of values for it. And any list in Maxima can have objects
of different types. The following example creates a list with the cubes
of 5, the expression 𝑥2 + √

𝑦, −3.2 (in bigfloat format) and the equation
𝐸 = 𝑚 𝑐2

(%i30) makelist (i^3, i, [5, x^2+sqrt(y), -3.2b0, E=m*c^2]);

(%o30)

[
125,

(√
𝑦 + 𝑥2)3

, −3.277b1, 𝐸3 = 𝑐6 𝑚3
]

7 Useful constants

There are some system variables associated to predefined mathematical
constants. Most of them have names starting with %. Three of those
variables are %pi (𝜋, the length of a circumference divided by its diameter),
%e, the Euler number 𝑒, base of the natural logarithms, and %i, which
is the imaginary number 𝑖 =

√
−1. Functions float and bfloat produce

floating-point approximations of %pi and %e.
The following example computes the product between two complex num-
bers written using variable %i.

(%i31) (3 + %i*4)*(2 + %i*5);

(%o31) (4 i + 3) (5 i + 2)

Function rectform, which stands for rectangular form, would show the
previous result separating the real and imaginary parts:

10

(%i32) rectform(%);

(%o32) 23 i − 14

8 Batch files

The command stringout(“filename”,input) will store all the input com-
mands that have been entered during a Maxima session, into a file named
“filename”. That file can be loaded in a future Maxima session, to redo
all those commands, with the command batch(“filename”). The name of
Maxima batch files are usually given the extension .mac to identify them
as Maxima batch files.
You can also create a Maxima batch file with a text editor. Just write the
input commands (without any %i labels) and then execute it in Maxima
with batch(“filename”). That is a useful way to use Maxima to solve a
problem. You write your commands to solve the problem in a text editor,
save them into a file, and without closing the editor open Maxima in
another window and run that file. If there is an error or you don’t get the
result you wanted, you just have to go back to the editor window, make the
necessary modifications, save them and back in the Maxima window rerun
the batch file. Be careful not to use %o variables in batch files, because
the number after %o might be different every time you execute them.
Many additional functionalities of Maxima come into batch files which
you execute in Maxima using load(“filename”). The difference between
batch and load is that load will not show the result of the commands being
executed. Both commands have a predefined list of directories where they
will look for the file with name “filename”.
Batch files can include any comments, opening with the two characters
/* and closing with */. Any commands entered directly into Maxima or
written into a batch file can contain blank spaces and new lines between
numbers, operators, variables and other objects, in order to make them
more readable.
Some commands that are used repeatedly in different working sessions,
for instance, the definition a frequently used function, can be placed inside
a batch file which can be loaded in future sessions. If the name of a batch
file to be loaded does not include a complete path but just the file name and
that file name does not exist in the current directory, Maxima will look for
it in a set of directories. That set of directories includes a sub-directory of
the users home directory. The name of that sub-directory can be different
in different systems but it is always stored in Maxima’s system variable

11

maxima_userdir. You can look at the value of that variable and if the
referred sub-directory does not exist, created them. Any batch files you
put into that sub-directory can then be loaded into Maxima by giving its
name, independently of the working directory being used in the current
Maxima session.
Every time Maxima starts it tries to load a user’s batch file in that max-
ima_userdir, with the name maxima-init.mac, before showing the first
input prompt. That means that you can create that file, if it doesn’t already
exist, and add commands that you want to be used in all your Maxima
sessions. For example, the Maxima commands shown in this document
have been executed a computer where there is a maxima-init.mac file with
the following two lines

ratprint: false$

linel: 66$

The first command prevents Maxima from showing warning messages
every time a floating-point number is replaced by a fraction, something
many Maxima functions do, and the second command limits the maximum
length of output lines to 66 characters. In a Linux system that file would
be located in /home/username/.maxima/.
Any other valid Maxima commands can be placed into that file, but make
extra sure that the commands you put have been testes, because any
errors will prevent Maxima from starting until you remove or correct that
initial batch file.

9 Algebra

Expressions can include mathematical functions as the function cosine in
the following example

(%i33) 3*x^2 + 2*cos(t)$

Those expressions can then be manipulated producing new expressions.
In the next example we find the square of the expression above and add
𝑥3 to it

(%i34) %^2 + x^3;

(%o34)
(
3 𝑥2 + 2 cos 𝑡

)2 + 𝑥3

As we have already mentioned besides numbers and expressions, other
kind of object we can manipulate is an equation as the following one

12

(%i35) 3*x^3 + 5*x^2 = x - 6;

(%o35) 3 𝑥3 + 5 𝑥2 = 𝑥 − 6

Most functions used to manipulate expressions can also be used for equa-
tions. For example, Maxima’s function allroots finds a numerical approxi-
mation to the roots of a polynomial, such as 𝑥2 + 𝑥 − 1; if allroots is given
the equation 𝑥2 + 𝑥 = 1, it will interpreted as 𝑥2 + 𝑥 − 1 = 0 and find the
roots of 𝑥2 + 𝑥−1. Therefore, when given the expression in (%o35), allroots
will find the roots of 3 𝑥3 + 5 𝑥 − 𝑥 + 6

(%i36) allroots(%o35);

(%o36) [𝑥 = 0.9073 i + 0.2776, 𝑥 = 0.2776 − 0.9073 i, 𝑥 = −2.222]

Two of those roots are complex numbers. The three roots are shown as a
list of three equations, instead of just numbers. That way of presenting
the result may seem odd, but it will prove convenient to interact with other
functions of Maxima. For example, to check that the third root shown is
in fact a root of the polynomial 3 𝑥3 + 5 𝑥 − 𝑥 + 6, we write

(%i37) subst(%o36[3], 3*x^3+5*x^2-x+6);

(%o37) 7.105e − 15

The notation %o36[3] means the third element in the list associated to
variable %o36, which is the equation 𝑥 = −2.222 and it is exactly what we
need to tell subst to substitute 𝑥 by −2.222. It is in fact substituted to by
−2.221834293486762 which is the value stored in list %o36; result (%o36)
is the exact result rounded to 4 significant digits. The result (%o37) is
not zero, because allroots is a numerical and its results have a numerical
error which in the double-precision format is of the order of 10−15.
There are other functions to find the exact solution to an algebraic equation
without numerical approximations. Function solve can find the exact
solutions to equation %o35, but the result is so long that rather than
showing it to you we will save it in a variable named result and will show
you only the last root which is real:

(%i38) result: solve (3*x^3 + 5*x^2 = x - 6, x)$

(%i39) xthru (result[3]);

(%o39) 𝑥 =

(
3

5
2
√

13331 − 1843
) 2

3 + 2
1
3

(
17 2

4
3 − 5

(
3

5
2
√

13331 − 1843
) 1

3
)

9 2
1
3

(
3

5
2
√

13331 − 1843
) 1

3

13

Function xthru combined the terms in the expression into a common
denominator, without expanding products. In this case that resulted
into a simpler expression. There are other functions to simplify or show
expressions in a different form, including ratsimp and radcan; which
one of them gives a simpler result depends on the expression. And what
we mean by simpler is a matter of personal taste, so we should try all
those functions to decide which result we prefer (they are equivalent, just
different). That is also why it is a good practice to save results before
displaying them.
You can also try to look at the two complex roots in result, using function
rectform to separate the real and imaginary parts.
Systems of linear equations and some nonlinear systems can also be solved
using solve. The two equations must be given into a list, as in the following
example

(%i40) exp1: (4 + 8)*x1 - 8* x2 = 6 + 4$

(%i41) exp2: (2 + 8 + 5 + 1)*x2 - 8*x1 = -4$

(%i42) solve ([exp1, exp2], [x1, x2]);

(%o42)

[[
𝑥1 = 1, 𝑥2 =

1
4

]]
There are two features of solve involved in the previous example. First,
instead of 2 equations, we provided two expressions; every expression given
to solve is then interpreted as that expression being equal to zero. Second,
there is an optional argument, after the equations, with the variable or
list of variables to be solved; if given, the number of variables must be
equal to the number of equations. In the examples we have given there is
no need to name the variables, because those variables are the only ones
that appear in the equations. However, in some cases the name of the
variables is necessary; for instance to solve just one equation 𝑥/𝑦2 =

√
𝑧

with three variables, we must specify what variable we want to get in
terms of the other two.
The result (%o42) is a list within another list, because the first list encloses
the values of the variables and the second list encloses the various possible
solutions to the system, which in this case was only one.
Function expand will expand products and powers of expressions, as in
the following example

(%i43) expand ((4*x^2*y + 2*y^2)^3);

(%o43) 8 𝑦6 + 48 𝑥2 𝑦5 + 96 𝑥4 𝑦4 + 64 𝑥6 𝑦3

Function subst, which we used before to substitute numerical values,

14

can also be used to substitute other expressions. In the next example we
substitute 𝑥 by 1/𝑧, and 𝑦 by

√
𝑧 in the expression (%o43)

(%i44) subst([x=1/z, y=sqrt(z)], %o43);

(%o44) 8 𝑧3 + 48
√
𝑧 + 96

𝑧2 + 64

𝑧
9
2

We will now simplify that result with ratsimp and save it into a variable r

(%i45) r: ratsimp(%);

(%o45)

√
𝑧

(
8 𝑧7 + 96 𝑧2) + 48 𝑧5 + 64

𝑧
9
2

Algebraic expressions are represented internally as lists; hence, some
Maxima functions for lists can also be used with expressions. For instance,
function length gives the length of a list and it can also be used to compute
the number of terms in an expression; for instance,

(%i46) length(r);

(%o46) 2

Since the expression r was combined into a single fraction, the correspond-
ing list has two elements, the numerator and denominator of that fraction.
However, the two elements of the expression cannot be obtained with r[1]
and r[2] as we have previously done with regular lists. In this case we
have to use the functions first and second. The following command shows
the numerator of r

(%i47) first(r);

(%o47)
√
𝑧

(
8 𝑧7 + 96 𝑧2) + 48 𝑧5 + 64

and the length of that expression is

(%i48) length(%);

(%o48) 3

because it is the sum of three other expressions.
A Maxima expression that cannot be further separated into other sub-
expressions, for instance 𝑥 or −3.5, is dubbed an atom; functions that
expect a list as its argument will usually trigger an error when they
are given an atom as the argument. Function atom tells whether the
argument given is an atom or not.
A very useful function to manipulate lists or expressions is map, which
will apply a given function to each element in a list. Here is an exam-

15

ple: suppose we have the following expression, which we will save into a
variable f

(%i49) f: (x+y)^2 / (x-y)^2;

(%o49)
(𝑦 + 𝑥)2

(𝑥 − 𝑦)2

We now would like to expand the squares in the numerator and denomi-
nator, but if we try to expand f, the result is the following

(%i50) expand (f);

(%o50)
𝑦2

𝑦2 − 2 𝑥 𝑦 + 𝑥2 + 2 𝑥 𝑦

𝑦2 − 2 𝑥 𝑦 + 𝑥2 + 𝑥2

𝑦2 − 2 𝑥 𝑦 + 𝑥2

The fraction was also expanded into 3 other fractions, which is not what we
wanted. If we map expand to the two terms of the fraction, the numerator
and denominator will be expanded separately giving the following result

(%i51) map (expand, f);

(%o51)
𝑦2 + 2 𝑥 𝑦 + 𝑥2

𝑦2 − 2 𝑥 𝑦 + 𝑥2

10 Trigonometry

Table 1 shows the names of the main trigonometric functions in Maxima.
Angles are given in radians, and not in degrees.
When applied to a floating-point number, these functions will give another
floating-point number. But if the argument is not a floating-point number,
the result is simplified but not computed, unless for some known numbers
for which the exact result is known, as in the following example. Function
float can be used to get an approximate floating-point result

(%i52) [sin(-0.5), cos(-1/2), tan(%pi/3)];

(%o52)

[
−0.4794, cos

(
1
2

)
,
√

3
]

(%i53) float(%);

(%o53) [−0.4794, 0.8776, 1.732]

Consider the point with 𝑥 coordinate −1 and 𝑦 coordinate 1; the position
vector of that point makes an angle of 3𝜋/4 radians with the x-axis, and
the tangent of that angle is −1 but if one computes atan(-1), the result
would be −𝜋/4 because arc tangent has many branches and the branch
chosen in Maxima goes from −𝜋/2 to 𝜋/2. The 𝑦 and 𝑥 coordinates can be

16

given to function atan2 and it will compute the correct angle:

(%i54) atan2(1, -1);

(%o54)
3𝜋
4

To convert an angle from degrees into radians, it is multiplied by 𝜋 and
divided by 180. In the following example we compute the sine of 60◦

(%i55) sin(60*%pi/180);

(%o55)

√
3

2

and to convert the results of the arc functions from radians to degrees,
they should be multiplied by 180 and divided by 𝜋.
There are some functions that simplify trigonometric expressions. Func-
tion trigexpand expands sines and cosines of sums of angles:

Table 1: Trigonometric functions
Function Description

sin(x) Sin

cos(x) Cosine

tan(x) Tangent

sec(x) Secant

csc(x) Cosecant

cot(x) Cotangent

asin(x) Arc sine

acos(x) Arc cosine

atan(x) Arc tangent between −𝜋/2 and 𝜋/2

atan2(y,x) Arc tangent between −𝜋 and 𝜋

asec(x) Arc secant

acsc(x) Arc cosecant

acot(x) Arc cotangent

17

(%i56) trigexpand(sin(u+v)*cos(u)^3);

(%o56) cos3 𝑢 (cos 𝑢 sin 𝑣 + sin 𝑢 cos 𝑣)

And function trigreduce tries to convert an expression into a sum of terms
with a single trigonometric function:

(%i57) trigreduce(%);

(%o57)
sin (𝑣 + 4 𝑢) + sin (𝑣 − 2 𝑢)

8
+ 3 sin (𝑣 + 2 𝑢) + 3 sin 𝑣

8

Function trigsimp applies the trigonometric identity sin2 𝑥+cos2 𝑥 = 1 and
relations among trigonometric functions, trying to write the expression
using only sines and cosines, as in the following example

(%i58) tan(x)*sec(x)^2 + cos(x)*(1 - sin(x)^2);

(%o58) sec2 𝑥 tan 𝑥 + cos 𝑥
(
1 − sin2 𝑥

)
(%i59) trigsimp(%);

(%o59)
sin 𝑥 + cos6 𝑥

cos3 𝑥

11 Calculus

The simplest way to represent mathematical functions in Maxima is by
using expressions. For example, to represent function 𝑓 (𝑥) = 3 𝑥2 − 5 𝑥,
the expression on the right-hand-side is linked to variable 𝑓

(%i60) f: 3*x^2 - 5*x;

(%o60) 3 𝑥2 − 5 𝑥

The derivative of 𝑓 with respect to 𝑥 is computed using function diff

(%i61) diff (f, x);

(%o61) 6 𝑥 − 5

and the antiderivative with respect to 𝑥 is obtained with integrate

(%i62) integrate (f, x);

(%o62) 𝑥3 − 5 𝑥2

2

18

The value of the function at a point, for instance 𝑓 (1), can be obtained
substituting 𝑥 by 1 using subst, or with function at

(%i63) at (f, x=1);

(%o63) −2

Maxima also has its own syntax to define general functions, which is the
subject of a later section, and which can be used when the function’s result
is an expression. For example, the same function 𝑓 (𝑥) = 3 𝑥2 − 5 𝑥 could
have also be defined as follows

(%i64) f(x) := 3*x^2 - 5*x;

(%o64) 𝑓 (𝑥) := 3 𝑥2 − 5 𝑥

The value of the function at a point, for instance 𝑥 = 1, and the function’s
derivative and antiderivative could then be obtained in this way

(%i65) f(1);

(%o65) −2

(%i66) diff (f(x), x);

(%o66) 6 𝑥 − 5

(%i67) integrate (f(x), x);

(%o67) 𝑥3 − 5 𝑥2

2

Notice that in (%i66) and (%67) Maxima would first get the output of
function 𝑓 when the its input is 𝑥, leading to the result 3 𝑥2 − 5 𝑥 and
then the derivative or antiderivative are computed. Therefore, (%i66) does
not really differentiate Maxima’s function 𝑓 , but rather the expression
associated to it. And similarly in (%67)
When the output of Maxima’s function 𝑓 (𝑥) is not an expression, (or a list
of expressions), diff and integrate return the result of 𝑓 (𝑥) without being
differentiated or integrate, as in the following example

(%i68) h(x) := if x < 0 then x/2 else x^2;

(%o68) h(𝑥) := if 𝑥 < 0 then
𝑥

2
else 𝑥2

(%i69) diff (h(x), x);

(%o69)
d

d 𝑥

(
if 𝑥 < 0 then

𝑥

2
else 𝑥2

)
When given an expression with several variables, diff returns a partial

19

derivative with respect to the differentiating variable and integrate as-
sumes constant values for the variables not being integrated

(%i70) diff (x^2*y-y^3, x);

(%o70) 2 𝑥 𝑦

Function integrate can also be used to computed definite integrals, as in
the following example

(%i71) integrate (1/(1 + x^2), x, 0, 1);

(%o71)
𝜋

4

12 Plots

The function plot2d is used to plot curves or points in two dimensions. For
example, the plot of the polynomial 𝑡3 + 𝑡2 − 2 𝑡, for values of 𝑡 between −3
and 2, can be done with the following command

(%i72) plot2d (t^3+t^2-2*t,[t,-3,2]))$

t^
3

+
t^

2
-2

*t

t

-10

-5

 0

 5

-3 -2 -1 0 1 2

Figure 2: Plot of the polynomial 𝑡3 + 𝑡2 − 2 𝑡.

The result of (%o72), shown in Figure 2, will appear in a separate window.
Moving the mouse over the plot, the coordinates of the point where the
cursor is are shown.

20

The expression to plot can also be an equation with 2 variables. In that
case it is necessary to give ranges of values for those two variables, as in
the following examples that plots the ellipse shown in Figure 3.

(%i73) plot2d(x^2/9+y^2/4=1,[x,-4,4],[y,-3,3]);

y

x

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 3: Plot of the ellipse 𝑥2

9
+ 𝑦2

4
= 1.

To plot several functions in the same window, those functions are placed
inside a list. For instance:

(%74) plot2d ([sin(x), cos(x)], [x, -2*%pi, 2*%pi]);

The resulting plot is shown in Figure 4.
To show several points in a plot, the coordinates of the points can be given
as lists, within another, with lists of points in a two-coordinate system.
The two coordinates of each point can be given as a list, inside another
list with all the points. For example, to show the three points (1.1, 5), (1.9,
7) and (3.2,9) in a plot, the points coordinates can be placed inside a list
linked to the symbol p:

(%i75) p: [[1.1, 5], [1.9, 7], [3.2, 9]]$

To create the plot, it is necessary to give plot2d a list that starts with
the keyword discrete, followed by the list of points. In this case it is not
mandatory to specify an interval of values for the variable in the horizontal
axis:

21

x

sin(x)
cos(x)

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Figure 4: Plot of functions sin and cosine.

(%i76) plot2d ([discrete, p]);

The plot is shown in Figure 5.
By default, the points are linked by line segments; to show only the points,
without line segments, the option [style, points] is used.
Command plot3d is used to plot functions of two variables. For example,
the following command creates the plot shown in Figure ??:

(%i77) plot3d (sin(x)*sin(y), [x, 0, 2*%pi], [y, 0, 2*%pi]);

Moving the mouse over the plot, while its left-side button is pressed, the
surface will be rotated showing how it looks from different sides. The
command plot3d also accepts a list of several functions to be plotted in the
same window. It is also possible to give a list o 3 functions of 2 parameters,
that define the 3 components of a position vector that describes a surface
(parametric plot).
Both plot2d and plot3d accept the options pdf_file, png_file and ps_file
which are used to save the plot into a file in PDF, PNG or PostScript
format. For instance, the following command saves the plot produced by
command (\%i74) into a PNG file:

(%i78) plot2d ([sin(x), cos(x)], [x, -2*%pi, 2*%pi], [png_file,"./plot1.png"]);

(%o78) [./plot1.png]

22

y

x

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 1 1.5 2 2.5 3 3.5

Figure 5: Plot of a line defined by three points.

The result shows a list with the files created, in this case only one. The
initial characters “./” indicate that the file named “plot1.png” is located
in the current directory where Maxima is running. If you don’t give
any initial characters “./” and you finished the plot2d command with a
semicolon, the output will show you in which directory the file was placed,
in a default directory.
There are many other options for plot2d and plot3d, as well as other
graphic functions, which are explained in the Maxima manual.

13 Functions

In Maxima what is usually referred to as a function is a program with
some input arguments and an output. Those functions can be defined
using Maxima’s syntax or using Lisp commands. It is even possible to
redefine any of the functions mentioned in previous sections; for instance,
if in the Maxima version being used some function has a bug that has
already been fixed in a more recent version, it is possible to load the new
version of the function and, unless it introduces conflicts with other older
functions, it should work correctly.
Maxima functions are normally called by giving their name followed by its
input inside parenthesis, as in diff(cos(x),x). Functions with only one input
argument can also be defined to be used just by giving their name before
or after their argument, as in 34! which computes the factorial of 34; the
name of the function is ! and 34 is its input argument (see documentation

23

 0
 1

 2
 3

 4
 5

 6 0
 1

 2
 3

 4
 5

 6

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

sin(x)*sin(y)

x

y

z

Figure 6: Plot of function sin(𝑥) sin(𝑦).

for prefix and potfix). And functions of two input arguments can be defined
to be used by just giving their name in between the two arguments, as in
3*7 (see documentation for infix).
As a first example, let us create our own version of the factorial function,
which we will name fact:

(%i79) fact(n) := if n <= 1 then 1 else n*fact(n-1);

(%o79) fact(𝑛) := if 𝑛 ≤ 1 then 1 else 𝑛 fact(𝑛 − 1)

(%i80) fact(6);

(%o80) 720

It is not necessary to use any command to return the output, since the
output of the last command in the function will become the output of the
function. A function can call itself recursively as it has been done in this
example.
Several Maxima commands can be grouped together by placing them
inside parenthesis and separating them by commas. Those commands are
run sequentially and the result of the last command will be the result of
the whole group. Each command can be indented and can expand more
than one line. The following example defines a function that adds all the
arguments given to it:

(%i81) add([v]) := block([s: 0],

for i:1 thru length(v) do

24

(s : s + v[i]),

s)$

(%i82) add (45,2^3);

(%o82) 53

(%i83) add (3,log(x),5+x);

(%o83) log 𝑥 + 𝑥 + 8

A list was used as the argument for the function, which makes the function
accept any number of input parameters (or none) and all the arguments
given will be placed in a list linked to the local symbol v. Function block
was used to define another local symbol s, initially linked to the value 0,
which by the end of the function will be linked to the sum of the input
variables. The first element given to block must be a list, with the names
of symbols that are to be considered local to the function, each one with
or without an initial value, and the remaining commands after that list
define the function. The function for iterates the local variable i —in this
case from 1 up to the length of the list— with increments, by default,
equal to 1 (option step can be given to modify the default value of that
increment). After the for loop, we gave the name of variable s, to make it
become the output of the function.
When an unknown function is used no errors are triggered; instead, the
unknown function is echoed in the output; for example:

(%i84) 2*4*maximum(3,5,2);

(%o84) 8 maximum(3, 5, 2)

Most of Maxima functions behave the same way when they fail to give a
result. For instance,

(%i85) log(x^2+3+x);

(%o85) log (𝑥ˆ2 + 𝑥 + 3)

That behavior is very useful, because it makes it possible to change the
value of the arguments later on and to reevaluate the function. For ex-
ample, substituting the symbol x in this last result by the floating-point
number 2.0, the logarithm would then be computed and its numerical
value shown:

(%i86) subst (x=2.0, %);

(%o86) 2.197

25

	Introduction
	Graphical interfaces for maxima
	Data input and output
	Numbers
	Variables
	Lists
	Useful constants
	Batch files
	Algebra
	Trigonometry
	Calculus
	Plots
	Functions

